
 

 1 

 1 
Assessment of Student Learning in Science Simulations and Games  2 

Edys S. Quellmalz, Michael J. Timms, & Steven A. Schneider 3 
WestEd 4 

 5 
Introduction 6 
 The development of science simulations and games has outpaced their grounding in theory and 7 
research on learning and assessment. Both genres draw upon the affordances of technology to 8 
provide students with opportunities to engage in active exploration and experimentation in virtual 9 
science environments that are impractical or impossible to access otherwise. Science simulations 10 
typically fall into three categories—simulations of science phenomena, multiuser virtual 11 
environments, and virtual laboratories. Educational, or “serious,” games immerse learners in realistic 12 
science worlds as the students gain and use knowledge to solve mysteries or to advance through 13 
multiple levels. Learning objectives may be acquisition of declarative knowledge—scientific facts, 14 
concepts and principles; formation of schema—connected knowledge structures about science 15 
systems; acquisition of procedural knowledge—steps in using tools and equipment; or strategic 16 
knowledge—learning when to employ inquiry skills and hone model-based reasoning. Even broader 17 
goals may target metacognitive strategies and epistemic strategies for far transfer. 18 
 Simulations and games typically present tasks that are generally interactive, requiring the student 19 
to construct understandings and conduct iterative investigations within the virtual environments. 20 
Activities may vary from set procedures to graduated levels of complex strategies. Tasks may 21 
provide feedback and hints to scaffold learning progress.  22 
 Relatively scarce, however, are clearly articulated descriptions of the evidence gathered to 23 
support claims of student learning. In most instances, rich streams of data from interactive tasks are 24 
not tapped as evidence of learning. Assessments of learning from simulations and games often resort 25 
to paper-based conventional task and item formats with limited possibilities for measuring the 26 
significant kinds of complex science learning targeted.  27 
 28 
Goals  29 

The goals of the paper are to: 30 
 31 

• Explore the promise and potential of games and simulations for science learning and 32 
as environments for formative, classroom assessments and for summative, large scale 33 
assessments; 34 

• Summarize research and practice on learning assessments in a range of educational 35 
science simulations and games; 36 

• Use the conceptual assessment framework of evidence-centered design to analyze 37 
current assessments in science simulations and games; and 38 

• Propose an agenda for research on assessments of science learning in and with 39 
simulations and games. 40 

 41 
Approach 42 
 This paper will focus the lenses of learning and assessment theory and research on the current 43 
state of practice employed in assessing learning in science simulations and games. The paper will 44 
compare the range of complex knowledge and processes advocated in challenging national and 45 
international science standards with the types of learning outcomes addressed in science simulations 46 
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and games. The conceptual assessment framework of evidence-centered design (ECD) will be 1 
employed to analyze the types of student models targeted by K-16 science simulations and games, 2 
the features of task models used to elicit evidence of learning, and the evidence models employed, 3 
including psychometric methods, to analyze and report student learning.  4 
 5 
Cognitively-Principled Assessment Design 6 
 In the domain of science, core knowledge structures are represented in models of the world built 7 
by scientists (Hestenes et al., 1992; Stewart & Golubitsky, 1992). Technologies are seen as tools that 8 
support schema formation by automating and augmenting performance on cognitively complex tasks 9 
(Norman, 1993). The NRC report, Knowing What Students Know, presents advances in measurement 10 
science that support the integration of cognitive research findings into systematic test design 11 
frameworks. Evidence-centered assessment design involves relating the learning to be assessed, as 12 
specified in a student model, to a task model that specifies features of the task and questions that 13 
would elicit observations of learning, to an evidence model that specifies the student responses and 14 
scores serving as evidence of proficiency (Messick, 1994; Mislevy et al., 2003; Pellegrino et al., 15 
2001). These three components of the conceptual assessment framework provide a structure for 16 
evaluating the state of current assessment practices in science simulations and games.  17 
 Below, we address assessments of science learning in the three types of simulations, then in 18 
games. We discuss the psychometric issues related to assessments in these innovative environments, 19 
followed by suggested research strategies for furthering the quality and utility of science learning 20 
assessments in simulations and games.  21 
 22 
Assessments of Science Learning in Simulations 23 
  In this paper, we define science simulations as dynamic representations of spatial, temporal, and 24 
causal phenomena in science systems that learners can explore and manipulate. In contrast to 25 
animations, where students view predetermined scenes and can only control viewing direction and 26 
pace, simulations adapt the dynamic displays in response to learner inputs. Key features of 27 
simulations include manipulation of structures and patterns that otherwise might not be visible or 28 
even conceivable, representations of time, scale, and causality, and the potential for generating and 29 
superimposing multiple physical and symbolic representations. Moreover, simulations have the 30 
potential to illustrate content in multiple representational forms, which can strengthen students’ 31 
mental models of concepts and principles and also reduce potentially confounding language 32 
demands. Simulations can present the opportunity for students to engage in the kinds of 33 
investigations that are familiar components of hands-on curricula and also to explore problems 34 
iteratively and discover solutions that students might not have discovered in other modalities. 35 
Importantly, simulations also can make available realistic problem scenarios that are difficult or 36 
impossible to create in a typical classroom.  37 

The most prevalent forms of simulations are two-dimensional computer simulations of 38 
science phenomena and virtual laboratories that simulate on-screen the experiments that are 39 
traditionally performed in real school laboratories. Virtual laboratories are valued for savings on 40 
equipment costs, ease of logistics, and safety. Virtual labs can be very efficient also by allowing 41 
several repetitions of an experiment in limited time. The technology platform offers data 42 
collection advantages, with students able to capture, record and analyze data easily and with time 43 
efficiency.  44 

Another form of simulation is the three dimensional, multi-user virtual environment (MUVE) 45 
that constructs simulated immersive experiences. In a MUVE, each user has a virtual 46 
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representation, called an avatar, and moves this graphical avatar through a three dimensional, 1 
virtual world. In addition to the benefits attributed to simulations, such as situating learning in a 2 
more authentic context and providing direct experiences and interaction with intangible, abstract, 3 
ideal, complex, or otherwise unavailable scientific phenomena, multiuser virtual environments 4 
permit learners to customize the learning environment and engage in collaborative problem-5 
solving.  6 
 7 
Research on Simulations and Student Science Learning 8 
 Numerous studies illustrate the benefits of science simulations for student learning. The 9 
benefits of simulations have been studied by multimedia researchers, by cognitive psychologists, 10 
by curriculum developers, and by commercial companies.  11 

Learning from Simulations. Multimedia research suggests that when degrees of learner 12 
control and interactivity are variables, spatial representations seem to enable effective mental 13 
models and visualizations (Schwartz & Heiser, 2006). Rieber et al. (2004) found that students 14 
given graphical feedback during a simulation on laws of motion with short explanations far 15 
outperformed those given only textual information. Simulations have been shown to facilitate 16 
knowledge integration and a deeper understanding of complex topics, such as genetics, 17 
environmental science, and physics (Horwitz et al., 2007; Hickey et al., 2003; Krajcik et al., 18 
2000; Doerr, 1996). Model-It was used in a large number of classrooms, and positive learning 19 
outcomes based on pretest-posttest data were reported (Krajcik et al., 2000). Ninth-grade 20 
students who used Model-It to build a model of an ecosystem learned to create “good quality 21 
models” and effectively test their models (Jackson et al., 1996). After participating in the 22 
Connected Chemistry project, which used NetLogo to teach the concept of chemical equilibrium, 23 
students tended to rely more on conceptual approaches than on algorithmic approaches or rote 24 
facts during problem solving (Stieff & Wilensky, 2003). Seventh, eighth-, and ninth-grade 25 
students who completed the ThinkerTools curriculum performed better than high school students 26 
on basic physics problems, on average, and were able to apply their conceptual models for force 27 
and motion to solve realistic problems (White & Frederiksen, 1998). An implementation study of 28 
the use of BioLogica by students in eight high schools, showed an increase in genetics content 29 
knowledge in specific areas, as well as an increase in genetics problem-solving skills (Buckley et 30 
al., 2004). Research conducted with the Modeling Across the Curriculum project measured 31 
inquiry skills in situ. Log files of student responses correlated systematic (vs. haphazard) inquiry 32 
performances with overall learning gains (Buckley et al, 2009). At the middle school level, a 33 
simulation of an aquatic ecosystem was used to allow students to look beyond the surface 34 
structures and functions they could see when an aquarium served as a physical model. The 35 
simulation allowed students to create connections between the macro-level fish reproduction and 36 
the micro-level nutrification processes (Hmelo-Silver, et al., 2008).  37 

Commercial simulation packages are becoming more prevalent in schools. Seventy-seven 38 
simulation products for middle and high school are currently being reviewed in an NSF-funded 39 
synthesis project (Scalise, et al., 2009). The simulations span topics such as thermodynamics, 40 
chemistry, genetics, and cell structure and function. The most common evaluation method, used 41 
in slightly more than half of the products reviewed, was a pre-post comparison of student 42 
learning on goals and objectives. Approximately four percent of the studies reported no gain, 43 
about 25 percent reported mixed outcomes in which some groups showed learning gains but 44 
others did not, just over 20 percent reported gains under the right conditions, and about 51 45 
percent reported overall gains.  46 
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At the post secondary level, the Physics Education Technology (PhET) project conducted 1 
over 275 individual student interviews during which the college undergraduates described what 2 
they were thinking as they interacted with over 75 simulations for use in teaching undergraduate 3 
physics, chemistry, and physical science (Adams, et al., 2008). The researchers observed that the 4 
simulations were highly engaging and educationally effective. 5 

Virtual Labs. Virtual laboratory products, such as Model Chemlab, Biology Labs Online, and 6 
Virtual ChemLab, are becoming increasingly used in high schools, particularly smaller schools 7 
in rural areas that do not have science labs. At the middle school level, virtual labs have been 8 
used to investigate topics such as density, porosity/permeability, and plant growth. The labs 9 
allow students to use virtual microscopes or examine different types of rocks. At the high school 10 
level, there are many virtual lab products designed for use in chemistry, physics, and biology 11 
courses. Students can perform virtual experiments dealing with aqueous chemistry, such as acid-12 
base reactions and solubility; physics experiments involving force and motion, springs, and 13 
electrical circuits; and virtual dissections of frogs and other animals. Virtual labs are also being 14 
used in introductory level college science and engineering courses to prepare students for work 15 
in real world labs in fields such as thermodynamics, robotics, and biotechnology. 16 

A review of literature comparing hands-on, virtual and remote laboratories in university 17 
science education found mixed results and that researchers were confounding many different 18 
factors, perhaps over-attributing learning success to the technologies used (Ma and Nickerson, 19 
2006). The review in progress of 25 commercially available virtual labs also found mixed 20 
evidence of effectiveness, but that the majority of the products produced learning gains (Scalise, 21 
et al., 2009).  22 

Multi-User Environments. Studies of science learning in multi-user virtual environments are 23 
fewer, but promising. A project using “collective simulations” allowed students to learn about 24 
the intricacies of interdependent complex systems by engaging in discourse with other students 25 
and teachers (Repenning & Ioannidou, 2005). The infrastructure created immersive learning 26 
experiences based on wirelessly connected handhelds. As part of the Mr. Vetro human body 27 
systems simulation prototype, each group controlled physiological variables of a single organ on 28 
their handheld computer. A central simulation gathered and projected all the data. Students 29 
subjected Mr. Vetro to different levels of exercise and controlled the heart and lungs to optimize 30 
his physical condition. Students recorded their data and used their parameter values to reach 31 
conclusions and answer paper-based questions prepared by their teacher. The project found that 32 
while students had some understanding of each separate organ, they did not have a clear sense of 33 
the connection between the circulatory and the respiratory systems. The pilot study focused, 34 
however, on user testing of the technologies and did not report student learning following the 35 
collaborative activities. 36 

Another study of multi-user virtual environments examined students’ understanding of a 37 
virtual infectious disease in relation to their understanding of natural infectious diseases. Two 38 
sixth-grade classrooms of students between the ages of 10 and 12 (46 students) took part in a 39 
participatory simulation and completed pre and post surveys about virtual infectious diseases 40 
(Nulight, et al, 2007). 41 
 42 
Analysis of Assessments of Science Learning Promoted By Simulations 43 
 In very few instances were assessments of student learning actually embedded within the 44 
simulation or designed to take advantage of its technological capabilities. In most of the projects 45 
using science simulations, paper-pencil tests were used and details of their design, i.e., science 46 
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knowledge and inquiry assessed, types of tasks and items, were not described in study 1 
publications, technical quality. This was the case with research-based simulation projects, 2 
curriculum development projects, and with the commercial simulations and virtual labs.  3 
 Criteria for Establishing the Quality of the Assessments. For K-12 simulations and 4 
assessments, the first criterion for the quality of the assessments (and simulations) would be 5 
documentation of the alignment of the targeted science content knowledge and inquiry skills 6 
with consensus national science standards such as the 2009 NAEP Science Framework, the 7 
National Science Education Standards, and the AAAS Benchmarks for Scientific Literacy. For 8 
simulations at the post secondary level, alignment should be documented of clearly specified 9 
learning goals and the assessments intended to measure them. Of particular importance would be 10 
the extent to which the assessment items provided evidence that the simulations promoted deep 11 
science understanding and inquiry. Since simulations typically address only a limited number of 12 
content and inquiry goals, are the simulation targets teaching and testing standards less well 13 
addressed by paper formats? And, do the assessment items and tasks, in turn, address the full 14 
range of a simulation’s goals? A second criterion would be documentation of the quality of the 15 
assessment items and tasks. Within the evidence-centered design framework, are the knowledge 16 
and skills in the student model elicited by items and tasks representing the task model, and do the 17 
data from the assessment tasks and items actually provide evidence of the simulation goals? An 18 
inherent dilemma is the disconnect between the science knowledge and skills that can be tested 19 
in static, paper item formats in comparison to the science knowledge and skills that can be tested 20 
within the dynamic simulation environment. Are technical qualities of the assessment’s item 21 
characteristics, reliability and validity reported? A third criterion is the utility of the assessments 22 
for the assessment purpose. If the assessments were intended for summative purposes, was the 23 
intent to document student learning from just the simulation? If the assessments are intended to 24 
inform instruction, did the study determine if instructors found the assessment information useful 25 
and did they act on it? In many of the reports, the assessments were used to document the 26 
effectiveness of the simulation, but were developed and used for research and evaluation 27 
purposes and not apparently intended to be included as a component of the simulation learning 28 
activity. The ultimate validity of the assessments must rest on the adequacy of the assessments 29 
for supporting the intended inferences and actions. 30 
  Potential of Simulation-based Assessments. Assessment tasks within science simulations 31 
can elicit evidence of rich, principled science learning. Although simulations can present 32 
assessment tasks and questions that ask for the same basic foundational knowledge often tested 33 
by paper-based items—such as definitions of consumers, producers, and producers in an 34 
ecosystem—more importantly, simulations can test students’ knowledge of how components of a 35 
system interact (e.g. flow of energy in food webs) and also assess understandings of emergent 36 
model behaviors (e.g., predator-prey effects on population dynamics). Moreover, simulations can 37 
directly assess students’ abilities to conduct inquiry in tasks such as requiring observations of 38 
organisms in a novel ecosystem to determine their roles and interrelationships. Simulations also 39 
permit iterative investigations of the impacts on population dynamics of multiple variables 40 
changing at the same time (Quellmalz, Timms, & Buckley, in press). Because simulations use 41 
multiple modalities to represent science systems and to elicit student responses, students with 42 
diverse learning styles and language backgrounds may have better opportunities to demonstrate 43 
their knowledge than are possible in text-laden print tests (Kopriva, et al., 2009).  44 

Status of Assessments of Learning from Science Simulations. Although the use of 45 
simulations in the projects reviewed generally was positively related to student science learning 46 
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outcomes, the assessments typically did not take advantage of the capabilities of the simulation 1 
technology to gather evidence of active inquiry skills and model-based reasoning. Most science 2 
simulation projects did not assess the full range of knowledge and inquiry skills supported by the 3 
simulation environment. For instance, the pretest and posttest for Model-It were paper pencil-4 
based with open-ended and multiple-choice items. Similarly, assessment data collected in the 5 
2004 BioLogica study included pre- and posttest paper-pencil data as well as log files showing 6 
types of student usage. Similarly, in the multi-user simulations, paper based items were used to 7 
test science learning.  8 

Learning effectiveness of the PHeT simulations was examined during think-alouds and 9 
interviews of users (Adams, et al., 2008). The students were asked prediction-type conceptual 10 
questions, then, during or after interacting with the simulation, they were allowed to revise their 11 
answer. However, the report of the interviews did not specify the science knowledge required, 12 
any inquiry skills involved, nor the interview questions asked about learning. The report 13 
indicated that most students understood the concepts covered in the simulation well enough to 14 
explain them accurately and to use them to make accurate predictions, a level of understanding 15 
far beyond what the researchers had observed was typically obtained from the coverage of these 16 
concepts in a physics course. Much of the report focused on design features of the simulations 17 
related to their usage. Although the cognitive interviews were better methods for tracing student 18 
understanding and reasoning, the simulations were not designed to incorporate assessments as 19 
components of course implementations. 20 
 In a few projects, researchers collected evidence of student learning in items and tasks 21 
embedded in the simulations. The types of tasks and items included not only conventional 22 
selected and constructed written responses, but other forms of constructed responses as well, 23 
such as drawing arrows to depict the direction and magnitude of a force or the flow of energy in 24 
a food web. More innovative response formats included analyses of sequences of problem 25 
solving actions. For example, the Modeling Across the Curriculum project used multiple-choice 26 
pre and post tests aligned to the learning goals of the project to measure learning gains. In 27 
addition, however, increasingly complex problem-solving or inquiry tasks with fading 28 
scaffolding were included at the end of each learning module. Performance on these tasks was 29 
measured by analyzing the sequence of students’ problem solving actions in addition to their 30 
explicit answers. Task performances were significantly correlated with overall learning gains to 31 
various degrees (Buckley, et al., 2009). 32 
 In sum, reports of the educational effectiveness of science simulations tend not to describe in 33 
sufficient detail the science knowledge and inquiry targeted in the designs of assessment items 34 
and tasks administered, and the analyses used to draw conclusions about learning. The power of 35 
simulation environments is that, once developed, they can host a large number of assessment 36 
questions and inquiry tasks ranging from tests of component concepts to integrated knowledge in 37 
extended investigations. The affordances of the simulations should be harnessed to design 38 
assessments that capture the value added of the levels of complexity of knowledge, reasoning, 39 
and inquiry the simulations address. 40 
 41 
Use of Science Simulations For Assessment 42 

An emerging function of simulations is their use as innovative assessment formats. Designs 43 
of simulations for summative purposes can aim to elicit evidence of inquiry skills and use of 44 
science principles by setting forth sets of tasks linked to scenarios about science phenomena or 45 
laboratory investigations. Use of science simulations for formative purposes can take advantage 46 
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of the technology’s capabilities for providing individualized feedback and hints to scaffold and 1 
benefit learning.  2 

Summative Assessment Uses of Science Simulations. The most prevalent use of technology 3 
in large-scale testing currently involves support for assessment logistics related to online delivery 4 
and automated scoring. Accountability programs remain caught up in perceived needs to 5 
document the comparability of scores and interpretation of results with computer-based and 6 
paper forms. A new generation of assessments, however, is attempting to break the mold of 7 
traditional testing practices. Innovative assessment formats, including simulations, are being 8 
designed to measure complex knowledge and inquiry previously impossible to test in paper-9 
based or hands-on formats. The new generation of testing is reconceptualizing assessment design 10 
and use and aiming to align summative assessment more directly to the processes and contexts of 11 
learning and instruction (Quellmalz & Pellegrino, 2009). 12 

A number of large-scale testing programs have begun to design innovative problem sets and 13 
item types that promise to transform traditional testing. The area of science assessment is 14 
pioneering the exploration of innovative problem types and assessment approaches across K-12. 15 
In 2006, the Programme for International Student Assessment (PISA) pilot tested the Computer-16 
based Assessment of Science (CBAS) with the aim of testing science knowledge and inquiry 17 
processes not assessed in the PISA paper-based test booklets. CBAS tasks included scenario-18 
based item and task sets such as investigations of the temperature and pressure settings for a 19 
simulated nuclear reactor. The 2009 National Assessment of Educational Progress (NAEP) 20 
Science Framework and Specifications proposed designs for Interactive Computer Tasks (ICT) 21 
to test students’ ability to engage in science inquiry practices. These innovative formats were 22 
included in the 2009 NAEP science administration. At the state level, Minnesota has an online 23 
science test with tasks engaging students in simulated laboratory experiments or investigations of 24 
phenomena such as weather or the solar system. Large-scale testing programs are beginning to 25 
explore the possibilities of dynamic, interactive tasks for obtaining evidence of science learning 26 
achievement levels. The current accountability stakes and constraints, however, tend to restrict a 27 
program’s options to take full advantage of the computer’s ability to provide tasks adapted to an 28 
examinee’s performance during the test. Nonetheless, science simulations open significant 29 
opportunities for the design of assessments of systems thinking, model based reasoning, and 30 
scientific inquiry advocated in national science standards, but seldom tapped in paper-based tests 31 
(Quellmalz et al., 2005).  32 

Formative Assessment Uses of Science Simulations. Simulations are well-suited to 33 
supporting some of the data collection, complex analysis, and individualized feedback and 34 
scaffolding features needed for formative assessment (Brown, Hinze & Pellegrino, 2008). The 35 
computer’s ability to capture student inputs permits collecting evidence of processes such as 36 
equipment use, problem solving, and strategy use as reflected by tool features manipulated, 37 
information selected, sequence of trials, numbers of attempts, and time allocation. Many of the 38 
design and practical limitations of systematic uses of formative assessments in classrooms can be 39 
overcome by the use of technology to align, design, deliver, adapt, and score assessments within 40 
rich task environments that measure deep understandings in a feasible and cost-effective manner 41 
(Quellmalz & Haertel, 2004).  42 

In an ongoing program of research and development, WestEd’s SimScientists projects are 43 
studying the suitability of simulations as environments for formative and summative assessment 44 
and as curriculum modules to supplement science instruction. (Quellmalz, et. al, 2008; 45 
Quellmalz, Timms & Buckley, in press). One of the SimScientists projects, Calipers II, funded 46 
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by the National Science Foundation, is studying the use of science simulations for end-of-unit, 1 
summative, benchmark purposes and for curriculum embedded formative purposes. Students use 2 
the simulation to investigate science problems that relate to understanding increasingly complex 3 
levels of grade-appropriate models of science systems. A learning progression underlies a 4 
sequence of assessments of components and roles of organisms in a system, to interactions 5 
among components in a system, to emergent behaviors of interactions in a system (Buckley, et 6 
al., submitted). To assess transfer, students conduct a range of inquiry activities across different 7 
ecosystems.  8 

 9 

 10  11 
Figure 1. Screenshot of SimScientists Ecosystems Benchmark Assessment Showing a Food Web 12 
Diagram Interactively Produced by a Student After Observing the Behaviors of Organisms in 13 
the Simulated Australian Grasslands Environment. 14 

 15 
Figures 1 & 2 present screen shots of tasks in a SimScientists summative, benchmark 16 

assessment designed to provide evidence of middle school students’ understanding of 17 
ecosystems and inquiry practices after completion of a regular curriculum unit on ecosystems. 18 
Students are presented with the overarching problem of preparing a report to describe the 19 
ecology of an Australian grasslands for an interpretive center. They investigate the roles and 20 
relationships of the animals, birds, insects, and grass by observing animations of the interactions 21 
of the organisms. Students draw a food web representing interactions among the organisms in the 22 
novel ecosystem. The assessment then presents sets of simulation-based tasks and items that 23 
focus on students’ understanding of the emergent behaviors of the dynamic ecosystem by 24 
conducting investigations with the simulation to predict, observe, and explain what happens to 25 
population levels when numbers of particular organisms are varied. In a culminating task, 26 
students present their findings about the grasslands ecosystem.  27 

 28 
 29 



 

 9 

 1 

 2  3 
Figure 2. Screenshot of SimScientists Ecosystems Benchmark Assessment Showing a Student’s 4 
Investigations with the Interactive Population Model 5 
 6 

In a companion set of curriculum embedded, formative assessments situated in a different 7 
ecosystem, a mountain lake, the technological infrastructure identifies types of errors and follows 8 
up with feedback and graduated coaching. Levels of feedback and coaching progress from 9 
identifying that an error has occurred and asking the student to try again, to showing results of 10 
investigations that met the specifications. Figure 3 shows a screenshot in which feedback has 11 
been provided as the student is constructing a food web diagram after they have observed the 12 
organisms interacting in the simulated mountain lake environment. Students self-assess their 13 
constructed responses by judging if their explanations meet criteria or match a sample response.  14 

These examples illustrate ways that assessment tasks can take advantage of the affordances 15 
of simulations to present significant, challenging inquiry tasks, provide individualized feedback, 16 
customize scaffolding, and promote self-assessment, metacognitive skills. Reports generated by 17 
the system for teachers and students indicate the level of additional help students may need and 18 
classify students into groups for tailored follow on, off line reflection activities.  19 

 20 
 21 
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 1 
 2 
Figure 3. Screenshot from the SimScientists Ecosystems Mountain Lake Embedded Assessment 3 
Showing Dynamic Feedback to a Student on the Food Web Diagram That She is Constructing 4 
 5 
Summary and Recommendations for Simulation-Based Assessments 6 

Science simulations hold enormous promise for measuring significant science learning. Not 7 
only can simulations represent temporal, causal, dynamic and unobservable phenomena, the 8 
technology can permit a greater range of ways that students can express their understandings and 9 
inquiry strategies. Efficient data capture can allow real time (on-the-fly) aggregation of 10 
responses, individualized feedback, customized coaching, and adaptive tasks. However, the 11 
project reports reviewed for this paper did not provide detailed descriptions of the student, task 12 
and evidence models of assessments used to document student learning from science 13 
simulations. Analyses were not possible of the depth of understanding of the science content or 14 
the nature of scientific inquiry tested. Descriptions of the source of the items or data on the item 15 
and task quality were not typically provided, therefore the evaluations of the technical quality of 16 
the assessments are next to impossible. Examples of simulation-based formative assessments 17 
were not found in the published literature. Most technology-based formative assessments tend to 18 
focus on declarative knowledge, conventional multiple-choice formats, and offer little follow-on 19 
scaffolding. Nor, do technology-based assessments take advantage of cueing techniques such as 20 
highlighting and movement to offer worked examples of successfully completed tasks.   21 

If science simulations are to become components of science curricula and widely used, 22 
documentation of the dependent measures of the simulations’ effects on learning will be 23 
essential, along with data on the technical quality of the dependent measures. Moreover, if 24 
science simulations are to become environments for testing complex science learning, rigorously 25 
designed specifications of student models, task models, and evidence models will need to be 26 
developed and documented. Whether science simulations are used for formative or summative 27 
assessment purposes, evidence of the technical quality of tasks, items, and their aggregations 28 
must be reported, as would be required for the dependent measures in scientific research. The 29 
transformation from traditional to innovative assessment will need to be supported by credible 30 
evidence of its quality. 31 
 32 
 33 
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Assessment in Science Educational Games 1 
 Using the Affordances of Games for Science Education. Gee (Gee, 2007) likens the strategic 2 
thinking and problem solving required in popular commercial games to the best sorts of science 3 
instruction that occur in schools today. It is these qualities that have led to the growth of the field of 4 
educational or "serious” games that is attempting to apply principles from the consumer gaming 5 
industry to the development of engaging games that help children learn (Beal et al, 2002). In 6 
consumer games, the primary purpose is entertainment, but serious games as discussed here, have 7 
the purpose of education or training. There are characteristics of serious games that make them 8 
especially effective in science learning, and in 2005, the NSF sponsored The National Summit on 9 
Educational Games with The Federation of American Scientists and the Entertainment Software 10 
Association. The summit found that games offer several attributes important for learning—clear 11 
goals, tasks that can be practiced repeatedly until mastered, monitoring learner progress and 12 
adjusting instruction to learner level of mastery, closing the gap between what is learned and its use, 13 
motivation that encourages time on task, and personalization of learning. In addition, the types of 14 
skills that players are required to master include processes and skills such as strategic and analytical 15 
thinking, problem solving, planning and execution, decision-making, and adaptation to rapid change. 16 
These are skills that are relevant to science education. Games also provide the chance for students to 17 
apply practical skills they have learned, work in teams, and to train for high-performance situations 18 
in a low-consequence-for-failure environment. 19 
 Examples of Science Games and Assessments. Although games seem to offer an opportunity to 20 
enhance students’ learning of complex science principles, research on how to effectively assess 21 
student learning in or with game environments is still in its infancy. A number of serious science 22 
games have been developed that provide rich environments. Three recent examples of such games 23 
include Quest Atlantis: Taiga Park (Barab, 2006; Barab & Dede, 2007a; Barab, Sadler, Heiselt, 24 
Hickey, & Zuiker, 2007b; Hickey, Ingram-Goble, & Jameson, 2009), River City (Ketelhut, Dede, 25 
Clarke, Nelson, & Bowman, 2008), and CRYSTAL ISLAND (Rowe, McQuiggan, Robison, & 26 
Lester, 2009). While these games provide students with simulated environments in which to apply 27 
science inquiry skills, the assessments of learning elements in them are not as developed as the game 28 
play elements. Work is underway, however, to conceive of and apply more dynamic assessment 29 
methods suited to the highly interactive game environments, as the following discussions of each of 30 
the three examples illustrate. The examples are not meant to be exhaustive of the field of serious 31 
science games, and all three examples are of a similar type, but they are useful for examining the 32 
current state of the art in assessment and serious games. 33 

The first example, Quest Atlantis: Taiga Park, is part of Quest Atlantic, an international 34 
learning and teaching project that uses a 3D multi-user environment to immerse children, ages 9-35 
16, in educational tasks. It aims to combine strategies used in commercial games with principles 36 
from educational research on learning and motivation. In the Taiga Ecological Sciences 37 
Curriculum, students perform quests in the Taiga Park environment, which includes a river, 38 
loggers, tourists, an indigenous farming community, a fishing resort, and park administration. 39 
This simulated world was designed to engage students in complex socioscientific inquiry while 40 
also helping them learn ecological science concepts like erosion, eutrophication, and hypothesis 41 
testing. Students’ avatars interact with virtual characters and data in order to evaluate competing 42 
explanations for declining fish populations in the Taiga River. However, the assessment of 43 
students is undertaken by classroom teachers who score the written mission reports submitted by 44 
students (Hickey et al., 2009). To date, the assessment is not embedded in the game play, 45 
although Shute et al. (Shute et al., 2009) use Quest Atlantis: Tiaga Park as the basis for a 46 
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theoretical example of how evidence-centered design (ECD) could be used to develop 1 
assessments that would include “stealth” assessments and Bayesian Networks to monitor student 2 
progress and provide more automated feedback to students and teachers. Stealth assessment is 3 
Shute’s term for unobtrusive assessments that are so seamlessly embedded in game play that they 4 
are not noticed by the student playing the game. Shute also proposes that in games, the ECD task 5 
model can be conceived as an “action model,” reflecting the fact that the object of assessment in 6 
the game is to dynamically model the students’ actions rather than modeling the tasks they did 7 
which does not imply the same dynamic measurement. 8 

Similarly, River City is a game-like multiuser virtual environment in which students can 9 
represent themselves through avatars, access various locations, use digital tools like microscopes, 10 
and undertake collaborative tasks in order to solve a mystery (Ketelhut et al., 2008). The River 11 
City virtual world is set in the 1800s and has a river, catchment area, and a town with institutions 12 
like a hospital and a university. Students interact with one another as avatars, or with computer-13 
based agents, digital objects, and instructor avatars. Students work in teams to develop 14 
hypotheses regarding one of three different illnesses that have infected the town. At the end of 15 
the investigation, there is self-assessment as students compare their research findings with those 16 
of other teams in their class in order to discuss potential hypotheses and causal models for the 17 
diseases. There is also some rule-based assessment that is implemented in an embedded 18 
individualized guidance system that uses personalized interaction histories collected on each 19 
student’s actions to offer real-time, customized support for science inquiry. Ketelhut et al. found 20 
that the use of the individualized guidance system had a statistically significant positive impact 21 
on students gain scores on a test of content knowledge in science inquiry and disease 22 
transmission. This effect was more positive for female students than males. The researchers plan 23 
to collect more detailed data on when and if the students first use the guidance system, which 24 
messages they view, where they are in the game when they view them, and what they do next. 25 
They hope that this will allow them to provide more information to teachers on how students are 26 
progressing. Although some automation of assessment has been made in River City, the primary 27 
scoring of content knowledge and skills has, to date, relied upon human scoring using rubrics 28 
after the students have finished working in the environment. 29 

CRYSTAL ISLAND is a narrative-centered learning environment built on Valve Software’s 30 
Source™ engine, the 3D game platform that is used for the commercial game Half-Life 2. On 31 
CRYSTAL ISLAND, students play the role of Alyx, the protagonist who is trying to discover the 32 
identity and source of an unidentified infectious disease. Students move their avatar around the 33 
island, manipulating objects, taking notes, viewing posters, operating lab equipment, and talking 34 
with non-player characters to gather clues about the disease’s source. Settings on the island 35 
include a beach area with docks, a field laboratory, underground caves, and a research camp. To 36 
progress through the mystery, students must explore the world and interact with other characters 37 
while forming questions, generating hypotheses, collecting data, and testing hypotheses. As 38 
students work to solve the mystery, they work through five different aspects of the science 39 
curriculum related to diseases. In the first two problems students deal with pathogens, including 40 
viruses, bacteria, fungi, and parasites. Students interact with in-game experts, books and posters 41 
to gather information that will enable them to trace the cause of the recent sickness among the 42 
scientists on the island. In the third problem, students have to compare and contrast their 43 
knowledge of four types of pathogens. In the fourth problem, students work through an inquiry-44 
based hypothesis-test-and-retest problem in which they complete a “fact sheet” on the disease 45 
and have it verified by the camp nurse. In the final problem, the student selects an appropriate 46 
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treatment plan for the sickened CRYSTAL ISLAND researchers.  1 
Assessment in CRYSTAL ISLAND is evolving. Currently the assessment is mainly 2 

embedded in the reaction of in-game characters to the student’s avatar. Researchers have been 3 
gradually building pedagogical agents in the game that attempt to gauge the student’s emotional 4 
state while learning (anger, anxiety, boredom, confusion, delight, excitement, flow, frustration, 5 
sadness, and fear) and react with appropriate empathy to support the student’s problem solving 6 
activities (McQuiggan, Robison, & Lester, 2008; Robison, McQuiggan, & Lester, 2009). A note 7 
taking feature was added and student notes were scored by researchers using rubrics 8 
(McQuiggan, Goth, Ha, Rowe, & Lester, 2008). Student notes were coded into four categories. 9 
One category was for student notes that contained facts from the narrative storyline, such as 10 
comments on the plot, objects, or symptoms of illness of particular characters. The second 11 
category was for facts from the curriculum, such as definitions or characteristics of viruses and 12 
bacteria. The third category was for student notes that explicitly expressed possible solutions 13 
regarding the source or cause of the outbreak or solution to the scientific mystery. A fourth 14 
category was used for student notes that proposed a hypothesis that was either narrative (e.g., 15 
suspecting a character of poisoning others) or curricular (e.g., guessing the cause of the disease 16 
wreaking havoc on the island). A fifth category of student notes dealt with lists of tasks they 17 
wanted to complete. McQuiggan et al. found that students who took hypothesis notes performed 18 
better on the posttests of content knowledge, which seems to indicate that it is important to 19 
scaffold students’ hypothesis generation activities in such a learning environment. There were, 20 
however differences among the students, with girls taking more notes than boys, and high-21 
mastery students taking more notes too. McQuiggan et al. also investigated if machine learning 22 
techniques could be applied to create measurement models that successfully predict the note-23 
taking categories characterizing the content of the notes produced by human scorers. They found 24 
that the best performing model was support vector machines (SVM), a set of related supervised 25 
learning methods used for classification, which correctly classified 86.4% of instances. The 26 
SVM model was followed by naïve Bayes Net (83.2%), nearest neighbor (81.0%), a pattern 27 
analysis method for classifying objects based on how close they are to training examples, and 28 
decision tree (80.6%), which indicates that a variety of methods could be applied to score such 29 
notes in real time.  30 

Analysis of Assessments of Science Learning in Games. To fully realize the educational 31 
potential of science games, assessment of learning needs to be a component of the gaming 32 
environment, otherwise students will have only an enjoyable experience, but little or no learning 33 
will occur. Also, until assessments can be effectively embedded in games, they will not be useful 34 
as alternative ways of assessing students in the classroom or as part of accountability tests. 35 
Assessment can be used in a few ways in games. First, establishment of the learning goals during 36 
the game design phase allows the tasks of the game to be aligned with desired educational 37 
outcomes, Second, assessment can be incorporated into the game play if it used to assess how 38 
well a player is performing at key points in the game and to determine what stage of the game is 39 
educationally appropriate next for the player. In this way, game play and assessment are 40 
intertwined. Thirdly, judgment of performance against educational goals on the game overall can 41 
provide indications of the understanding that a student has gained through their game play. 42 
However, if assessment is not carefully embedded in unobtrusive ways, then the player is going 43 
to feel that the experience is neither playful nor enjoyable, and may stop playing. Evidence- 44 
centered design seems to offer a useful framework for developing assessments that can operate in 45 
the dynamic learning environments of games, but the field needs to actually use ECD to develop 46 
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such assessments because doing so will help to refine the approach. Also, real examples will lead 1 
to deeper thinking about how to achieve accurate but stealthy assessments that can provide 2 
feedback to students and their teachers about the learner’s progress in science knowledge and 3 
skills.  4 
 5 
Psychometrics for Assessments in Science Simulations and Games  6 

How Assessment is Applied in Simulations and Games. The field of educational 7 
psychometrics has grown up around the types of responses that are typical in paper-based, large-8 
scale assessments: primarily multiple-choice and written response items. Over the years, the 9 
methods of analyzing these types of student responses have become increasingly sophisticated, 10 
progressing from Classical Test Theory to Item Response Modeling methods that can model 11 
different dimensions of students responses and even dynamically adapt the assessment to the 12 
ability of the student as the student is being assessed. In computer-based simulations and games, 13 
the ways in which a student can respond in an assessment task are greatly expanded. As a result, 14 
the old ways of describing response types as, for example, multiple-choice or written response, is 15 
too limiting and new ways of thinking about response types need to be defined. In games, 16 
particularly, any assessment task that interrupts the flow of the game can destroy the very 17 
elements of enjoyment that make it playful and engaging, so new unobtrusive measures need to 18 
be developed.  19 

Limitations of Classical Test Theory and Item Response Theory. The complex tasks in 20 
simulations and games cannot easily be modeled using just Classical Test Theory (CTT) and 21 
Item Response Theory (IRT), the methods most commonly used in educational testing. To 22 
understand why this is the case, it is helpful to refer to the definition of “complex tasks” in 23 
computer-based testing that was proposed by Williamson et al. (Williamson, Bejar, & Mislevy, 24 
2006) which lists four characteristics of complex tasks. The first characteristic is that the 25 
completion of the task requires the student to undergo multiple, non-trivial, domain-relevant 26 
steps and/or cognitive processes. This is true of simulations and games. For example, as shown 27 
in Figures 1-3, students in the SimScientists simulation-based assessment for ecosystems first 28 
observe a simulated ecosystem, noting the behaviors of the organisms, then construct a food web 29 
to represent their observations, and finally use a population model tool to vary the number of 30 
organisms in the ecosystem to observe outcomes over time. 31 

The second characteristics of complex tasks is that multiple elements, or features, of each 32 
task performance are captured and considered in the determination of summaries of ability 33 
and/or diagnostic feedback (Williamson et al., 2006). The wide range of student responses and 34 
actions that are captured in simulations and games illustrates this point. These range from 35 
standard selected responses like multiple choice and short written responses to actions like 36 
drawing an arrow in a food web (Quellmalz, Timms and Buckley, in press), gathering 37 
quantitative evidence on fish, water and sediment in a lake (Squire & Jan, 2007), to the depth and 38 
angle of incision of a surgical instrument in a mannequin (Russell, 2002). In addition to response 39 
types, researchers in the field of intelligent tutoring and assessment are working on interpreting 40 
student emotions via facial recognition, skin sensors, posture, gestures and brain waves to get 41 
measures of student engagement and affect (Arroyo et al., 2009; Heraz & Frasson, 2009; 42 
Stevens, Galloway, Berka, Johnson, & Sprang, 2008) to better interpret and support student 43 
learning. Such measures will obviously require different metrics and models if and when they are 44 
incorporated into assessments. 45 
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Williamson et al. (2006) identify that the third characteristic of complex tasks is that there is 1 
a high degree of potential variability in the data vectors for each task, reflecting relatively 2 
unconstrained work product production. An example of this in the performance of complex tasks 3 
in simulations and games is when the time taken by a student to perform a task is used as a 4 
variable measurement. Unlike traditional measures that have a linear pattern in which more of 5 
something is better, time does not necessarily follow that pattern. A student who completes a 6 
task quickly might be a high performer who possesses the knowledge and skill required for the 7 
task, or he might be a low performer who does not have know and skills, but responds quickly in 8 
order to move on in the overall assessment. A student who takes a long time performing the task 9 
might be skilled in the task, but proceeds thoughtfully and carefully, or he may be unskilled and 10 
lingers because he is confused. Without being considered in conjunction with additional 11 
variables about task performance, time is not an easy variable to interpret. 12 

The fourth characteristic in the Williamson et al. definition of complex tasks is that the 13 
evaluation of the adequacy of task solutions requires the task features to be considered as an 14 
interdependent set, for which assumptions of conditional independence typically do not hold. 15 
There is a tension between validity and reliability in assessment in simulations and games. 16 
Because of their complexity and the longer time that students spend on the tasks, simulations and 17 
games can mimic real-world scenarios and thereby provide greater validity to the assessment. At 18 
the same time, however, the use of these complex tasks reduces the number of measures that can 19 
be included in any one test and causes many of the measures to be interdependent because they 20 
are related to the same scenario, thereby reducing the reliability. While some independence can 21 
be achieved by segmenting tasks within the overall simulation or game, interdependence is hard 22 
to avoid. 23 

The Need for an Increased Range of Psychometric Methods. Taken together, the 24 
characteristics of complex tasks in simulations and games lead to diverse sequences of tasks that 25 
produce multiple measures, often gathered simultaneously, that require metrics that are not 26 
usually found in standard assessments. The multidimensional nature of assessment in simulations 27 
and games make CTT unsuitable as a measurement method because it cannot model different 28 
dimensions of a performance simultaneously. Measurement in complex tasks involves 29 
interpreting patterns of behavior across one or more tasks. The assessments also need to be made 30 
in real time (on-the-fly) as the student is still engaged in the task, and they are often calculated 31 
based on very limited amounts of data due to the fact that the student is in the early stages of a 32 
task or series of tasks.  33 

So, the types of measurement methods that better lend themselves to simulations and games 34 
are probability-based methods (like IRT and Bayes Nets) that can handle uncertainty about the 35 
current state of the learner, can provide immediate feedback during tasks (e.g., Model Tracing or 36 
rule-based methods like decision trees), and are able to model patterns of student behavior (e.g., 37 
Artificial Neural Networks and Bayes Nets). These methods are discussed next. 38 

Discussion of measurement models suitable for assessment in simulations and games 39 
The following methods have been used in simulations and games, or in related work in 40 
intelligent tutoring, and each is explained briefly and citations are given for relevant work that 41 
has used them. It is not intended to be an exhaustive list, nor a detailed explanation of the 42 
methods. 43 

Item Response Theory – Item response models like the Rasch model have the advantage that 44 
they place estimates of student ability and item difficulty on the same linear scale, measured in 45 
logits (a log of the odds scale). This means that the difference between a student’s ability 46 
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estimate and the item difficulty can be used to interpret student performance.  Since both the 1 
estimates of student abilities and the estimates of item difficulty are expressed in logits, they can 2 
be meaningfully compared. IRT could be a useful methodology to use in determining how much 3 
help students need in solving problems in an intelligent learning environment by measuring the 4 
gap between item difficulty and current learner ability (Timms, 2007). IRT is also useful for 5 
analyzing existing response data to obtain estimates of prior probabilities that can be used in 6 
Bayes Nets and has been used in conjunction with Artificial Neural Networks (Cooper and 7 
Stevens, 2008). 8 

Bayes Nets - A Bayesian network is a probabilistic graphical model that represents a set of 9 
random variables and their conditional independencies via a directed acyclic graph. In the Bayes 10 
Net, nodes represent random variables and the edges (links between the nodes) encode the 11 
conditional dependencies between the variables. Across a series of nodes and edges a joint 12 
probability distribution can be specified over a set of discrete random variables. Figure 4 shows 13 
an example of a fragment of a Bayes Net used in the scoring of the ecosystems benchmark 14 
assessments in SimScientists. It shows how nodes in the network representing data gathered from 15 
student actions in the assessment (the lower two rows) provide information to assess the top level 16 
variables of content knowledge and science inquiry skills represented in the upper two rows.  17 
 18 

 19 Figure 4. Fragment of a Bayes Net From the SimScientists Ecosystems Benchmark Assessment 20 
 21 

Values for the edges are encoded, but not visible in this view. Data are gathered from student 22 
interactions with the simulation or game and passed to the Bayes Net where algorithms are then 23 
applied using software such as Netica to perform inference to produce estimates of probability 24 
that students possess the knowledge or skill represented via the nodes. In recent years, Bayesian 25 
networks have been widely used in intelligent tutoring systems but over the years, their use in 26 
systems for assessment has grown. Martin and VanLehn (1995) and Mislevy and Gitomer (1996) 27 
studied the applications of Bayesian networks for student assessment. Mislevy has continued this 28 
work, although not in science assessments, with Behrens in the NetPass program which assesses 29 
examinees ability to design and troubleshoot computer networks (Behrens, Frezzo, Mislevy, 30 
Kroopnick, & Wise, 2008). Conati et al. (2002) applied Bayesian networks to both assessing 31 
students’ competence and recognizing students’ intentions. WestEd is currently developing a 32 
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Bayes Net system (among other methods) in the SimScientists simulation-based science 1 
assessment.  2 

Artificial Neural Networks – An Artificial Neural Network (ANN) is an adaptive, most often 3 
nonlinear system that learns to perform a function (an input/output map) from data. In a 4 
“supervised” ANN, the system parameters are developed in a training phase during which the 5 
system is calibrated using sample data that has already been scored. The ANN is built using a 6 
systematic step-by-step procedure to optimize a performance criterion or to follow some implicit 7 
internal constraint, which is commonly referred to as the learning rule. After the training phase, 8 
the Artificial Neural Network parameters are fixed and the system is deployed to solve the 9 
problem at hand (the testing phase). ANN models achieve good performance via massively 10 
parallel nets composed of non-linear computational elements, sometimes referred to as units or 11 
neurons. Each neuron has an activation level that is represented as a number and each connection 12 
between neurons also has a number, called its weight. These resemble the firing rate of a 13 
biological neuron and the strength of a synapse (connection between two neurons) in the brain. A 14 
neuron's activation depends on the activations of the neurons connected to it and the 15 
interconnection weights. Neurons are often arranged into layers. Input layer neurons have their 16 
activations set externally. ANNs have been widely used in intelligent systems, especially those in 17 
which the system needs to learn from data.  In science education, an example of the use of ANNs 18 
is in the work of Stevens through a series of projects in IMMEX (Interactive MultiMedia 19 
Exercises).  A recent article (Cooper & Stevens, 2008) describes the use of ANNs to assess 20 
student metacognition in problem-solving in chemistry. In addition to the ANN, IMMEX uses 21 
Hidden Markov Models to cluster a large number of performances in a predetermined number of 22 
strategies (called states) and uses IRT to model the student ability, or level of difficulty that the 23 
student has been able to reach in the problem set.  24 

Model Tracing – the model tracing approach was developed for the cognitive tutors produced 25 
by the Pittsburgh Advanced Cognitive Tutors (PACT) center at Carnegie Mellon University. 26 
Model tracing works by comparing the student’s solution of a problem to an expert system for 27 
the domain of interest. Production rules, or rules about knowledge and skills in a given domain 28 
are, in this system, based on an approach from the work of cognitive scientist John Anderson’s 29 
ACT-R model representing skill-based knowledge (Anderson, 1993; Anderson & Lebiere, 1998). 30 
As the student progresses through the problem solving, the model tracing system generates at 31 
each step the set of all possible next steps by referring to the production rules. These possible 32 
“next steps” are not displayed to students but are used by the computer to evaluate the quality of 33 
the student’s next step in problem solving. The computer-generated set of possible steps is called 34 
the conflict set, and the decision as to which is the best next step to take from the entire set of 35 
possible steps is called resolution of the conflict set. The computer assesses each of the possible 36 
next steps in the conflict set and decides if it is productive, counter-productive or illegal (one that 37 
violates a fundamental principle). It is the group of productive solutions which the tutor then 38 
evaluates as to which is most teachable and presents those options to the student. 39 

Rule-based methods – For immediate, formative assessment of student actions, rule-based 40 
methods that are simpler than the other methods discussed above, can be appropriate. Rule based 41 
methods are ones that employ some logic method to decide how to interpret a student action. A 42 
simple example would be posing a multiple-choice question in which the distractors (wrong 43 
answer choices) were derived from known misconceptions in the content being assessed. The 44 
student’s incorrect response could then be diagnosed and immediate action can be taken, such as 45 
providing coaching. This type of diagnosis is the basis of the work of Minstrell and Kraus in 46 
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their work with the DIAGNOSER software that assesses students in science and diagnoses their 1 
understanding and misconceptions (Minstrell & Kraus, 2007). An example of a more complex 2 
rule-based method is the decision tree, which applies a logic chain to categorize the student 3 
response. The logic chain is represented in a diagram with logic gates that direct the program to 4 
implement one of two choices depending on whether the logic test is true or false. An example 5 
from the SimScientists project is shown in Figure 5, which shows the logic behind the generation 6 
of feedback messages to students as they develop a food web diagram to represent the 7 
interactions of organisms that they observed in the mountain lake ecosystem as illustrated in 8 
Figure 3. 9 
 10 

 11  12 
 13 
Figure 5. Example of a Decision Tree for Diagnosing Student Misconceptions in the 14 
SimScientists Ecosystems Embedded Assessment 15 
 16 
Summary and Recommendations for Research 17 

The use of simulations for and of learning will benefit from studies of effective and efficient 18 
assessment designs. Pilot projects can provide evidence of the quality, utility and feasibility of 19 
simulation-based assessments. Research on cognitively-based principles for designing 20 
simulation-based assessments can both test hypotheses about the benefits of static, active and 21 
interactive modalities for testing types of science knowledge (declarative, schematic, procedural, 22 
schematic) and contribute to design principles to be used by the assessment community. 23 
Limitations and affordances of science simulations for English learners and students with 24 
disabilities are just beginning to be explored (Silberglitt, submitted; Kopriva, et al., 2009). 25 
Learning benefits of science simulations for complex learning in post secondary courses, 26 
informal science education environments (museums, after school programs), and practical 27 
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settings (health clinics, wellness programs) should be explored. All such investigations call for 1 
research-based, rigorously designed assessments that meet their intended purposes, such as 2 
diagnostic assessment or summative assessment. All such research calls for documentation of the 3 
assessment designs and technical quality.  4 

Much more research is needed on how assessment can be built into appropriate serious 5 
games in science to demonstrate that learning can be assessed in reliable and valid ways. Until it 6 
has been established that assessment can be built into science games, the field cannot move on to 7 
address the question of how games can be used in formative assessments in the classroom or, 8 
perhaps, in accountability assessments to provide evidence of complex skills that cannot be 9 
assessed by existing formats.  10 

The growing use of simulations and games to assess and promote student learning requires an 11 
expansion of the psychometric methods that are used to measure and interpret student 12 
performance. Further research is needed to investigate what are the most effective methods to 13 
assess learning in complex tasks in games and simulations. This will require that we expand our 14 
range of psychometric tools to include such things as Bayesian Networks, Artificial Neural 15 
Networks, Model Tracing, Rule-based methods and possibly even other methods to take full 16 
advantage of these new assessment media. Education researchers will need to work with other 17 
disciplines like computer science where expertise on pattern analysis of complex data already 18 
exists. Also, training for future psychometricians should include learning about and using this 19 
expanded methodological toolkit.  20 
 21 
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